skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Centurioni, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A dataset of sea surface temperature (SST) estimates is generated from the temperature observations of surface drifting buoys of NOAA’s Global Drifter Program. Estimates of SST at regular hourly time steps along drifter trajectories are obtained by fitting to observations a mathematical model representing simultaneously SST diurnal variability with three harmonics of the daily frequency, and SST low-frequency variability with a first degree polynomial. Subsequent estimates of non-diurnal SST, diurnal SST anomalies, and total SST as their sum, are provided with their respective standard uncertainties. This Lagrangian SST dataset has been developed to match the existing and on-going hourly dataset of position and velocity from the Global Drifter Program. 
    more » « less
  2. Abstract The Minimet is a Lagrangian surface drifter measuring near-surface winds in situ. Ten Minimets were deployed in the Iceland Basin over the course of two field seasons in 2018 and 2019. We compared Minimet wind measurements to coincident ship winds from the R/V Armstrong meteorology package and to hourly ERA5 reanalysis winds and found that the Minimets accurately captured wind variability across a variety of time scales. Comparisons between the ship, Minimets, and ERA5 winds point to significant discrepancies between the in situ wind measurements and ERA5, with the most reasonable explanation being related to spatial offsets of small-scale storm structures in the reanalysis model. After a general assessment of the Minimet performance, we compare estimates of wind power input in the near-inertial band using the Minimet winds and their measured drift to those using ERA5 winds and the Minimet drift. Minimet-derived near-inertial wind power estimates exceed those from Minimet drift combined with ERA5 winds by about 42%. The results highlight the importance of accurately capturing small-scale, high-frequency wind events and suggest that in situ Minimet measurements are beneficial for accurately quantifying near-inertial wind work on the ocean. Significance Statement In this study we introduce a novel, freely drifting wind measurement platform, the Minimet. After an initial validation of Minimet sea surface wind measurements against independent wind measurements from a nearby research vessel, we investigate their utility in context of the near-inertial work done by the wind on the ocean, which is important for the ocean’s energy budget. We find Minimet near-inertial wind work estimates exceed those estimated using winds from a state-of-the-art wind product by 42%. Our results indicate that capturing storm events happening on time scales less than 12 h is crucial for accurately quantifying near-inertial wind work on the ocean, making wind measurements from platforms such as the Minimet invaluable for these analyses. 
    more » « less
  3. Abstract. Over the past decade, our understanding of the IndianOcean has advanced through concerted efforts toward measuring the oceancirculation and air–sea exchanges, detecting changes in water masses, andlinking physical processes to ecologically important variables. Newcirculation pathways and mechanisms have been discovered that controlatmospheric and oceanic mean state and variability. This review bringstogether new understanding of the ocean–atmosphere system in the IndianOcean since the last comprehensive review, describing the Indian Oceancirculation patterns, air–sea interactions, and climate variability.Coordinated international focus on the Indian Ocean has motivated theapplication of new technologies to deliver higher-resolution observationsand models of Indian Ocean processes. As a result we are discovering theimportance of small-scale processes in setting the large-scale gradients andcirculation, interactions between physical and biogeochemical processes,interactions between boundary currents and the interior, and interactions between thesurface and the deep ocean. A newly discovered regional climate mode in thesoutheast Indian Ocean, the Ningaloo Niño, has instigated more regionalair–sea coupling and marine heatwave research in the global oceans. In thelast decade, we have seen rapid warming of the Indian Ocean overlaid withextremes in the form of marine heatwaves. These events have motivatedstudies that have delivered new insight into the variability in ocean heatcontent and exchanges in the Indian Ocean and have highlighted the criticalrole of the Indian Ocean as a clearing house for anthropogenic heat. Thissynthesis paper reviews the advances in these areas in the last decade. 
    more » « less
  4. null (Ed.)